Tag Archives: nobel

Nobel 2011: Immunitat, l’expansió de l’Univers i quasicristalls

El desembre és un mes de tradicions. Sobretot cap a finals de mes, però les primeres setmanes no en són òrfenes del tot. Per exemple, a Suècia, tenen el costum d’organitzar una reunió per entregar els premis més prestigiosos de la ciència: els Nobel en Medicina o Fisiologia, Física i Química.

La medalla dels Nobel (Font: Wikimedia Commons)

Dissabte passat a la tarda —en una cerimònia que es va allargar des de quarts de cinc fins a les sis— Bruce Beutler, Jules Hoffmann, Saul Perlmutter, Brian Schmidt, Adam Riess i Dan Shechtman van rebre les medalles que els acrediten com a guardonats i van fer els discursos d’acceptació del premi. Aquest any, però, un element va afegir morbo a la cerimònia: es va entregar el premi de manera pòstuma a Ralph Steinman, que va morir sense saber que havia rebut el reconeixement d’un Nobel. De moment, però, centrem-nos en els premis.

Com s’engeguen les nostres defenses?

El 3 d’octubre, l’Assamblea Nobel de l’Institut Karolinska d’Estocolm va fer públic que els guardonats de 2011 en Medicina o Fisiologia eren Bruce Beutler i Jules Hoffmann, pels seus descobriments sobre l’activació de la immunitat innata, i Ralph Steinman, pel descobriment de les cèl·lules dendrítiques i el paper que juguen en la immunitat adaptativa.

Beutler, Hoffmann i Steinman, guanyadors del Nobel en Medicina o Fisiologia 2011

El sistema immunitari és el conjunt de cèl·lules i molècules que actuen com a mecanisme de protecció de l’organisme davant l’atac de microorganismes infecciosos. Tot i això, una activació errònia d’aquest sistema de defensa també pot provocar reaccions d’autoimmunitat —és a dir, l’atac contra el propi cos (com passa en la diabetis mellitus tipus 1 o la malaltia de Crohn)— o reaccions excessives com les que es donen en les al·lèrgies.

L’atac del sistema immunitari contra els agents infecciosos es descompon en dues fases: en primer lloc, actua la immunitat innata i, després, entra en acció la immunitat adaptativa. Les dues respostes són complementàries, però la segona afegeix un nou nivell de complexitat a les defenses del cos i és una innovació  evolutiva que es troba només en els vertebrats (i no en tots).

Quan es produeix una infecció, la resposta del cos es produeix en dues onades successives, cadascuna amb unes característiques concretes

La immunitat innata és la primera línia de defensa, encarregada d’aturar la invasió tan aviat com es detecta l’entrada de patògens. Apareix en pràcticament qualsevol tipus d’animals. De fet, Beuttler i Hoffmann han rebut el premi perquè van descobrir els mecanismes que activen aquesta primera fase de la defensa en animals molt diferents. Els treballs de Hoffmann, publicats el 1996, van identificar en Drosophila el receptor Toll, una peça essencial per a l’activació de les defenses de la petita mosca. Dos anys més tard, Beuttler localitzava en ratolins els parents de Toll en els mamífers, els Toll-like receptors (o TLR), amb una funció idèntica. Aquestes proteïnes es troben a la membrana de les cèl·lules responsables de la immunitat innata. Quan localitzen una molècula estranya al cos provinent d’algun microorganisme aliè, s’hi uneixen i desencadenen la primera gran reacció per aturar la infecció: la inflamació.

Un receptor Toll-like

Així doncs, en certa manera, els receptors Toll són les barreres que les patrulles de l’exèrcit del nostre cos utilitzen per controlar les fronteres.

La immunitat adaptativa és la segona gran línia de defensa dels vertebrats. Permet a l’organisme fer net de la infecció, a més de dotar-lo de memòria per enfrontar-se més ràpidament i fàcil a futures invasions de patògens ja coneguts. Steinman va descobrir el 1973 les cèl·lules dendrítiques, responsables de l’activació de tota la cascada de reaccions pròpia d’aquesta resposta secundària. Són aquestes cèl·lules les que presenten als limfòcits T els elements localitzats en l’etapa anterior amb els receptor Toll-like. Això provoca l’activació i multiplicació dels limfòcits, que acaba conduint a la producció d’anticossos i l’aparició de la memòria. El procés depèn de determinats senyals generats durant l’etapa innata que les cèl·lules dendrítiques detecten.

Una cèl·lula dendrítica (i limfòcits)

Per tant, les cèl·lules dendrítiques són els soldats que —enviats des de les fronteres— informen i aporten proves que s’ha produit una invasió, per tal que l’exèrcit es mobilitzi per eliminar l’enemic.

El premi a Steinman ha estat, de fet, un dels grans punts d’interés dels Nobel d’aquest any, ja que es tracta del primer guardonat pòstum des dels anys 70, quan es van modificar les bases del premi. L’anunci del premi es va produir un dilluns, i el científic canadenc havia mort el divendres anterior per culpa d’un càncer de pàncrees (que justament s’estava tractant amb una teràpia experimental basada en les “seves” cèl·lules dendrítiques). La Fundació Nobel, però, va acordar mantenir l’honor del premiat tot i la seva mort: aquest fet no es va saber fins després de produir-se l’anunci del premi, i es va considerar que aquesta situació encaixa amb la norma que permet guardonar algú que mor entre la comunicació de la decisió i l’entrega del premi. Així ho explicava un web canadenc, país d’origen d’Steinman.

→ Us aconsello fer un cop d’ull a aquest article de El País per completar la informació.

Cap a on va l’Univers?

El 4 d’octubre, la Reial Acadèmia de Ciències sueca va decidir concedir el Nobel en Física a Saul Perlmutter, Brian Schmidt i Adam Riess pel seu descobriment de l’expansió accelerada de l’Univers a través de l’observació de supernoves distants.

Perlmutter, Schmidt i Riess, guardonats amb el Nobel en Física 2011

El 1998, el món (bé, sobretot, el món dels cosmòlegs i astrofísics) va quedar sorprès davant de l’anunci que l’Univers no només s’estava expandint, sinó que ho feia de manera accelerada, cada cop més ràpida. Aquesta idea anava contra el que es podia esperar, ja que la lògica feia pensar que l’Univers s’havia d’expandir cada cop més lentament després de l’impuls inicial del Big Bang. Així, s’hauria arribat a un punt d’equilibri i, potser —per acció de l’atracció gravitatòria— l’Univers hauria començat a contraure’s fins a quedar concentrat novament en un punt, l’anomenat Big Crunch.

Els resultats, tot i que sorprenents, van quedar confirmats pel fet que la descoberta la van fer paral·lalment dos equips d’investigadors. El grup liderat per Perlmutter (el Supernova Cosmology Project) treballava en l’anàlisi de supernoves distants des de 1988, mentre que l’equip de Schmidt (el High-z Supernova Search Team), on es va integrar Riess, s’hi havia posat el 1994. El Huffington Post recollia així el premi a aquests dos equips, un americà i l’altre australià.

El punt brillant de baix a l'esquerra és la supernova de tipus 1a 1994D, fotografiada pel Hubble prop de la galàxia NGC 4526 (Font: Wikimedia Commons)

Una supernova (aquí teniu la completíssima entrada en anglès) és una explosió estel·lar que emet una gran quantitat de llum. Aquest fet convertia les supernoves en unes eines molt útils per estudiar la geometria de l’Univers, ja que fins i tot aquelles que es troben molt lluny (als límits propers al perímetre del cosmos) es poden arribar a veure per la seva enorme lluminositat. Tots dos grups van començar a treballar amb les supernoves de tipus 1a, que tenen una brillantor característica i molt semblant per a totes. En aquests estudis, es van trobar que la llum que en captaven era menor de l’esperada.

L'univers està en expansió accelerada (Font: http://bit.ly/hO4npc)

Això només podia voler dir que, de fet, aquestes supernoves eren a una distància més gran que la que es pensava i, per tant, que l’Univers premia l’accelerador en el seu creixement.

L’explicació del perquè d’aquest fenòmen és, encara avui, desconeguda. El que queda clar és que hi ha d’haver alguna força que impulsi l’Univers a continuar creixent, i a fer-ho cada cop més ràpid fins a arribar (en teoria) a un cosmos on tot serà tan lluny de qualsevol altra cosa que serà del tot gelat. Aquesta força, avui per avui, l’anomenem energia fosca. No sabem què la forma. No sabem com actua. Però sabem que és el motor de l’acceleració de l’Univers. No només això, sinó que aquesta energia fosca representa —per increïble que pugui semblar— el 73% de tot el que hi ha a l’Univers. Pel que fa a la resta de components, el 23% de l’espai és matèria fosca (que es pensa que inclou els forats negres, entre altres) i només el 4% (!) és matèria normal (o, dit correctíssimament, bariònica) com la de la pantalla on llegiu aquest post.

→ Aquest vídeo penjat a Microsiervos pot ser un bon complement per entendre el fenòmen de l’expansió accelerada, què és la matèria fosca i que Einstein es va equivocar (o no) amb la seva cosntant cosmològica. És en anglès, i els subtítols en portuguès, però deixa veure.

I la matèria… és com ens pensem?

El 5 d’octubre, era novament la Reial Acadèmia de Ciències de Suècia l’encarregada d’anunciar que el Nobel en Química corresponia a l’israelià Dan Schechtman pel descobriment dels quasicristalls.

Dan Schectman, Nobel 2011 en Química

El reconeixement li arriba a Schechtman 30 anys després de descobrir aquesta nova estructura de la matèria en analitzar al microscopi electrònic un nou al·liatge d’alumini i manganès. En general, els sòlids estan formats per cristalls, disposicions ordenades i —això és el més important— periòdiques (repetides idènticament en les tres dimensions) dels àtoms que els formen. Els quasicristalls també són estructures ordenades però, en canvi, no es repeteixen periòdicament: observant-ne una còpia desplaçada respecte a l’original no hi veurem mai una coincidència exacta.

El premi arriba trenta anys després que es veiessin per primer cop aquestes noves ordenacions atòmiques, observant al microscopi electrònic els patrons de difracció de raigs X de l’al·liatge que esmentàvem. Tan rares són aquestes estructures que, en teoria, no podien existir: qualsevol cristall havia de tenir la propietat de la simetria translacional, i els quasicristalls es sortien de la norma.

Els patrons de difracció d'un cristall i d'un quasicristall. En el primer, la imatge és idèntica sigui quin sigui el punt que prenem de referència; en el segon, el patró és ordenat però no idèntic per a qualsevol punt que usem com a centre (Fonts: http://bit.ly/vG766K i Wikimedia Commons)

La incredulitat de la comunitat investigadora va fer que Schectmans’hagués de sentir dir el nom del porc científicament (i no em refereixo a Sus scrofa domestica ;-)) i que fos expulsat del grup de recerca on treballava. Finalment, però, dos anys després de les primeres observacions i amb el suport d’altres científics, va aconseguir publicar el seu descobriment. I, de fet, ben aviat va trobar un suport afegit per a la nova estructura de la matèria que havia identificat, provinent d’un camp del tot inesperat: l’estudi dels mosaics.

Més concretament, es va poder aprofitar del mosaics aperiòdics. Justament com els quasicristalls, aquestes estructures es caracteritzen per la aperiodicitat (ja ho diu el nom). Aquests tipus de mosaics, tot i que estudiats a fons molt més tard, ja es poden trobar a l’Alhambra, on apareixen amb profusió per les limitacions a la representació de la figura humana que l’Islam imposa als creients. El físic i matemàtic Roger Penrose havia descobert poc abans de la troballa de Schectman que aquests dibuixos es podien obtenir amb la senzilla combinació de només dos tipus de llosetes: un rombe gras i un rombe prim. Quan altres investigadors es van plantejar què passaria si en cada intersecció del mosaic s’hi situés un àtom, la resposta va ser que s’obtenia un patró idèntic al dels quasicristalls.

Els mosaics aperiòdics de Penrose i de l'Alhambra (Font: Wikimedia Commons)

Amb els anys, s’ha rehabilitat la figura del descobridor dels quasicristalls. No només això, sinó que fins i tot s’ha acabat modificant la definició dels cristalls per incloure-hi aquelles organitzacions ordenades però no periòdiques. A més a més, l’anàlisi posterior de tots dos ha fet que els mosaics aperiòdics hagin conduït a un més bon coneixement dels quasicristalls. En tots dos, moltes de les relacions entre els seus elements s’expliquen gràcies al número auri (Φ).

Per les seves propietats úniques, els materials amb estructura qusicristal·lina —majoritàriament sintètics, però ja se n’han trobat de naturals a Rússia— s’estan començant a utilitzar com a materials d’alta resistència mecànica (és el cas de determinats tipus d’acer), com a aïllants tèrmics per a millorar l’eficiència dels motors o com a recobriments superficials antiadherents (molt útils, per exemple, en les paelles).

→ Aquest article de Público fa un bon resum del perquè del premi, a més de valorar la idoneïtat del Nobel en aquest moment, ja que potser hauria estat més adequat als anys 80.

 

El web dels Nobel (www.nobelprize.org) és la millor i més completa font d’informació per a posts com aquest. És ideal per perdre-s’hi unes quantes hores veient com expliquen aquells descobriments que han merescut un honor com el Nobel, en qualsevol dels seus camps: ho podeu veure amb la Medicina, la Física o la Química. Moltes de les imatges d’aquest post també vénen d’allà mateix, excepte aquelles on s’indica el contrari.

Sé que m’ha sortit un post llarg, però és que havia deixat acumular massa feina. Això sí, tant si us resulta curt com llarg, us convido a comentar-lo aquí sota mateix.

Anuncis

1 comentari

Filed under Física, Medicina, Notícies, Química

Premi Nobel de Química’09: La fàbrica de la vida

Un cop més, tal com sembla que és la tendència aquest any, tres han estat els guardonats amb el Nobel de Química. Tots tres, una dona i dos homes, han tingut un paper essencial en l’estudi d’un dels orgànuls cel·lulars més destacats, el ribosoma. Tal com es pot llegir al comunicat oficial de la Fundació Nobel, Venkatraman Ramakrishnan, Thomas A. Steitz i Ada E. Yonath han estat distingits pels seus estudis de l’estructura i la funció del ribosoma.

Els tres guardonats. D'esquerra a dreta: Ramakrishnan, Yonath i Boyle

Els tres guardonats. D'esquerra a dreta: Ramakrishnan, Yonath i Steitz

Venkatraman Ramakrishnan (Wiki) va nèixer el 1952 a Chindambaram (Índia). El 1971, va llicenciar-se en Física a la Universitat Maharaja Sayajirao de Baroda. Un cop finalitzada la llicenciatura, va traslladar-se a la Universitat d’Ohio, on va aconseguir el doctorat en Física cinc anys més tard. Després d’aquesta fase, va començar a interessar-se per la Biologia, que va estudiar a San Diego. Fruit d’aquest interès, va iniciar la seva recerca sobre els ribosomes a la Universitat de Yale, una tasca que encara continua actualment al Laboratori de Biologia Molecular de Cambridge (Anglaterra). També s’ha interessat per les histones i la cromatina.

Thomas Steitz (Wiki) va nèixer a Wisconsin l’agost de 1940. Tota la seva educació va tenir lloc al mateix estat, on va obtenir la llicenciatura a la Universitat Lawrence. El 1966, ja a la Universitat de Harvard, va doctorar-se en Bioquímica i Biologia Molecular. Després d’un temps a Cambridge i Göttingen (Alemanya), des del 1986 està vinculat a la Universitat de Yale com a investigador i professor al Howard Hugues Medical Institute.

Ada Yonath (Wiki) és nascuda el 1939 a Jerusalem. El 1962 va llicenciar-se en Química a la Universitat Hebrea de Jerusalem. Sis anys més tard, va assolir el grau de doctora a l’Institut de Ciència Weitzmann, amb una tesi centrada en la cristal·lografia de raigs X. Després de diverses estades a centres nord-americans (Carnegie Mellon, MIT i Chicago) i alemanys (Instituts Max Planck de Berlín i Hamburg), va tornar al Weitzmann, entitat a la qual encara continua vinculada.

Els ribosomes—com aquest que podeu veure a sota—són una peça essencial per a la química de la vida. Evidentment, qualsevol dels orgànuls de les cèl·lules tenen una funció primordial per al seu funcionament, i tota alteració resulta perjudicial. El ribosoma (els milers de ribosomes de cada cèl·lula), però, juga un paper especialment important: la seva funció és la de “construir” totes les proteïnes cel·lulars. Com sabeu, les proteïnes són un dels quatre tipus bàsics de molècules orgàniques de tot organisme viu, juntament amb glúcids (sucres), lípids (greixos) i àcids nucleics (ADN i el menys conegut ARN). Estan implicades en tot tipus de processos i funcions del cos, però citarem només un parell d’exemples de la seva tasca: 1) els músculs es flexionen i estenen gràcies a l’actina i la miosina que els formen, 2) els enzims, la maquinària responsable de totes les reaccions químiques cel·lulars, són un tipus específic de proteïna.

Representació idealitzada d'un ribosoma en plena activitat

Representació idealitzada d'un ribosoma en plena activitat

El paper dels ribosomes en aquesta síntesi de les proteïnes és el de TRADUIR les instruccions escrites a l’ADN cel·lular. És a dir, tornant a l’analogia que representa l’ADN com l’alfabet en què està escrit el “llibre de la vida”, els ribosomes són un traductor a un llenguatge que permet a les cèl·lules utilitzar aquestes instruccions. Per tal de fer-ho, però, cal passar per un estadi intermedi: l’ARN, més concretament l’ARN missatger (o mRNA). AIxí doncs, el que ocorre és el següent:

  1. Al nucli cel·lular, l’ADN d’un gen concret es transcriu a mRNA, gràcies a l’acció d’un enzim específic (RNA polimerasa II).
  2. L’mRNA abandona el nucli i es desplaça cap al citoplasma. Allà hi ha multitud de ribosomes, tant sencers (i actius) com separats en les seves dues subunitats.
  3. La subunitat petita del ribosoma “atrapa” l’mRNA i recluta una subunitat gran. Així es forma un ribosoma complet actiu.
  4. La traducció per part del ribosoma es fa corrent sobre la seqüència de mRNA: cada codó—grup de 3 lletres de l’mRNA—suposa l’entrada d’un aminoàcid de la proteïna (seguint el codi genètic universal), aportat per una molècula d’ARN de transferència (o tRNA).

Per tal de poder complir aquesta funció, els ribosomes són estructures complexíssimes. La seva composició és lleugerament diferent en procariotes (els bacteris) i eucariotes (pràcticament la resta d’éssers vius, inclosos nosaltres), però les seves semblances ens permeten assegurar que tenen un origen evolutiu comú per a tots dos grups. Tots dos tipus es componen de les dues subunitats que hem mencionat, i també en tots dos casos hi apareixen tant proteïnes com ARN ribosòmic (o rRNA). Com a demostració de la complexitat d’aquest orgànul, esmentarem només els components que trobem en els eucariotes: la subunitat petita es compon d’una sola molècula de rRNA i al voltant de 32 proteïnes; la subunitat gran està formada per tres molècules de rRNA i unes 49 proteïnes (el nombre de components proteics encara no es coneix amb seguretat). Trobareu més informació dels ribosomes i els processos en què participen aquí, aquí i també aquí.

La cursa per a desxifrar aquesta laberint tan embolicat la va iniciar Ada Yonath a finals dels anys 70. Va ser en aquell moment quan es va fixar l’objectiu de reconstruir l’estructura del ribosoma emprant la tècnica que va dominar durant la seva tesi doctoral: la cristal·lografia de raigs X. Es tracta d’una eina habitual en la descripció de les estructures biològiques, ja que pemet fer un “mapa” de cadascun dels àtoms d’una molècula. La seva importància ja va ser reconeguda pels Nobel l’any 1962, en què es va premiar la descripció de l’estructura de l’ADN aconseguida el 1954 amb aquesta mateixa tècnica. El seu fonament és la difracció (o desviament) que pateixen els raigs X en impactar contra una cristall. En el cas de la biologia, aquests cristalls es construeixen al voltant de la molècula que es vol analitzar; un feix de raigs X travessa llavors el cristall i s’escindeix. El patró resultant es recull amb un sensor CCD (el recordeu, del Nobel de Física?) i, de la seva interpretació, en resulta la localització dels àtoms de la molècula cristal·litzada. Podeu trobar més informació d’aquesta tècnica a la Wiki (amb un amplíssim article en anglès) i en aquesta pàgina especialitzada.

La idea de Yonath va ser considerada gairebé una bogeria en aquell moment, donada l’enorme complexitat del ribosoma. Tot i això, va aconseguir crear alguns cristalls de gran qualitat, que incloïen la subunitat petita del ribosoma d’un bacteri que sobreviu a altes temperatures (el que la feia molt més estable). Després d’aquests primers passos, diversos científics van orientar també els seus esforços a aquest objectiu; Ramakrishnan i Steitz van fer aportacions fonamentals per assolir-lo. Vint anys després de la idea original, el 1998, Steitz va aconseguir la primera estructura de la subunitat gran. Un parell d’anys més tard, ell mateix va publicar l’estructura més refinada de la subunitat gran del ribosoma del bacteri Haloarcula marismortui, mentre Yonath i Ramakrishnan mostraven al detall la subunitat petita de Thermus thermophilus. La tasca d’aquest darrer va permetre, a més, entendre el mecanisme ribosomal per no cometre errors a l’hora de sintetitzar proteïnes (equivalents a les mutacions de l’ADN). I aquest és el resultat de tots aquest esforços:

L'estructura detallada d'un ribosoma: la subunitat gran apareix en blau, la subunitat petita en groc. Les "boletes" són les proteïnes, mentre que els "bastonets" són molècules de rRNA

Estructura detallada d'un ribosoma: en blau, la subunitat gran; en groc, la subunitat petita. Les "boletes" són les proteïnes, mentre que els "bastonets" són molècules de rRNA

A més del que heu llegit, podeu complementar la informació sobre els ribosomes i la tasca de tots els investigadors implicats en esbrinar-ne l’estructura en aquest enllaç. A banda de la importància per a entendre el funcionament de la síntesi de les proteïnes, i totes les implicacions que té en el metabolisme cel·lular, aquesta recerca pot ajudar-nos també en la medicina. Concretament, els ribosomes són una diana essencial per als tractaments antibiòtics contra els bacteris: com és lògic, si es troben fàrmacs capaços de bloquejar un procès tan bàsic com aquest, els bacteris afectats tindran problemes seriosos per sobreviure.

I això és tot pel que fa al Nobel de Química. Com ja sabeu, podeu adreçar els precs i preguntes que us quedin als comentaris del peu de l’entrada. La sèrie dels Nobel no ha acabat encara, però ja queda poc: ja sabem els noms de tots els guanyadors, i en podrem fer doncs una valoració.

PS: Aquí teniu la notícia tal i com va aparèixer a El País, VilaWeb i l’israelià Globes (he estat incapaç de trobar-la al diari més famós d’allà, el Ha’aretz).

Deixa un comentari

Filed under Biologia, Notícies, Química

Premi Nobel de Física’09: Les noves aplicacions de la llum

Aquest és el punt en comú que tenen els tres guardonat amb el Nobel de Física d’aquest any: haver desenvolupat noves tecnologies per a l’aplicació de la llum a les nostres comunicacions. L’Acadèmia Sueca ha decidit distingir, per una banda, Charles K. Kao pels seus descobriment innovadors sobre la transmissió de la llum en fibres per a la comunicació òptica, i per l’altra, Willard S. Boyle i George E. Smith per la invenció d’un circuit semiconductor d’imatges—el sensor CCD. El comunicat oficial del guardó utilitza aquestes paraules per explicar les raons del premi.

Els tres guardonats. D'esquerra a dreta: Kao, Smith i Boyle

Els tres guardonats. D'esquerra a dreta: Kao, Smith i Boyle

Charles Kao (Wiki) va nèixer a Shanghai el 1933. Ja de ben jove es va traslladar a Anglaterra, on va llicenciar-se en Ciències al Woolwich Polytechnic, associat llavors a la Universitat de Londres. El 1965 va completar el seu doctorat en enginyeria electrònica a l’Imperial College. El descobriment que l’ha portat a guanyar el Nobel el va dur a terme al centre de recerca de Standard Telecommunications Laboratories (associat a la companyia telefònica Standard Telephones and Cables) a Harlow. Des de llavors, ha format part de diverses universitats xineses (es va retirar a Hong Knog) i nord-americanes, i ha treballat també en el sector privat.

Willard Boyle (Wiki) és nascut el 1924 a Amherst (Nova Escòcia). Tota la seva educació universitària—interrompuda en part per la Segona Guerra Mundial—va tenir lloc a la Universitat McGill de Canadà, on es va llicenciar el 1947 i on també va obtenir el seu doctorat en Física 3 anys més tard. Després de passar pel Canada’s Radiation Lab i de ser professor al Royal Military College of Canada, va passar a formar part de Bell Labs, a Nova Jersey. En aquesta empresa, on va treballar fins a la jubilació, va desenvolupar la tecnologia del sensor CCD juntament amb Smith.

George Smith (Wiki) va nèixer a l’estat de Nova York el 1930. El 1955, després de servir a la Marina, va llicenciar-se a la Universitat de Pensilvània i el 1959 va doctorar-se en Física a la Universitat de Chicago. Des de llavors, i fins que es va retirar, va treballar a Bell Labs, formant equip amb Boyle.

Un fragment de fibra òptica demostra la seva capacitat de transmissió de la llum

Un fragment de fibra òptica demostra la seva capacitat de transmissió de la llum

La fibra òptica és, segurament, l’eina més important per a la comunicació en els nostres dies. Esteu llegint aquest blog gràcies a la fibra òptica, o xerrant per telèfon o Skype amb un amic que viu a l’altra punta de món perquè hi ha fibra òptica, o veient uns vídeos a YouTube de la mà de la fibra òptica. Els milions de quilòmetres d’aquest material que recorren el globus de punta a punta han canviat radicalment la nostra manera de comunicar-nos.

Tot això ha estat possible, en primera instància, gràcies a la feina del sinobritànic Charles Kao. El 1966, amb el seu equip de Harlow, va plantejar la possibilitat de transmetre llum a centenars de quilòmetres de distància. Segons ell, per tal de superar la vintena de metres que fins llavors era el límit per a transmetre dades gràcies a la llum, només calia desenvolupar materials més adequats. La seva idea era que la pèrdua d’informació que limitava les transmissions no es devia a fenòmens físics de dispersió, sinó a la utilització de materials amb massa impureses.

Els càlculs de Kao van permetre desenvolupar una tecnologia capaç de canalitzar més adequadament la llum per fer-la arribar a grans distàncies. Per a fer-ho, s’empren materials amb un índex de refracció menor que el de l’aire al seu voltant, la qual cosa evita que la llum pugui escaparse’n (tal i com passa amb una part de la llum que entra a l’aigua). La manca d’impureses en les fibres d’aquests materials assegura que la llum circuli sempre pel seu interior, “rebotant” sempre entre les seves parets. Amb aquest impuls inicial, quatre anys més tard es van crear ja les primeres fibres ultrapures, que van ser els primers quilòmetres de les actuals autopistes de la informació.

Un sensor CCD, emprat en aquest cas en una càmera HP de 2.1 megapixels

Un sensor CCD, emprat en aquest cas en una càmera HP de 2.1 megapixels

Tornem un moment als vídeos de YouTube que hem mencionat abans. Molt probablement (segur) que s’han gravat amb una càmera digital, semblant a la que heu fet servir també vosaltres aquestes vacances. Boyle i Smith són els pioners de la tecnologia que els va donar lloc: el 1969, van parir i desenvolupar la idea dels sensors CCD. Aquests són la base de les càmeres digitals domèstiques i de moltes altres utilitzades en la recerca científica, en camps tan diversos com la medicina (les càmeres acoblades als microscopis o altres emprades en diagnòstics per imatge i cirugia) i l’astronomia. També tenen utilitat com a processadors de senyals, memòria d’ordinadors o filtres electrònics.

La gràcia del sensor CCD (expliquem d’una vegada les sigles: charge-coupled device, és a dir, dispositiu amb càrrega associada) és que permet transformar una senyal lluminosa en el moviment d’una càrrega elèctrica, retinguda en una petita matriu de silici. El fenomen físic sobre el que es fonamenta el CCD és l’efecte fotoelèctric, el descobriment del qual va ser el que li proporcionar a Einstein l’honor del Nobel el 1921: l’impacte dels fotons, les partícules que formen la llum, és capaç de desplaçar una partícula sobre un material. Els dos guardonats d’aquest any van aprofitar aquesta capacitat de la llum per tal que el seu dispositiu pogués captar-la i emmagatzemar-la sobre un suport electrònic.

Això és el que passa amb cadascun dels píxels de les nostres càmeres digitals: l’impacte de la llum d’un determinat color sobre el CCD encarregat d’aquella zona queda emmagatzemat en forma d’informació electrònica. Així és com el conjunt de sensors de la càmera actuen com un “ull electrònic”, i configuren la imatge completa. Els avantatges que ofereixen respecte a la fotografia tradicional, basada en la impressió d’una pel·lícula, són la seva major sensibilitat i la capacitat d’actuar també amb longituds d’ona diferents de les visibles, com els ultraviolats o els infrarrojos (un motiu més per emprar-los al Hubble, per exemple).

Un últim apunt: en aquesta pseudobiografia de Boyle trobareu molt ben explicat (i amb un punt d’humor) com ell i Smith van arribar a plantejar la utilització d’aquest “ull digital”.

I fins aquí la lliçó dels Nobel de Física. Tot i el retard, espero que us resulti interessant saber perquè els guardonats són considerats  dominadors de la llum. Disposeu dels comentaris pel que us vingui de gust. Aviat parlarem dels honrats amb el Nobel de Química, novament per una recerca íntimament lligada a la biologia molecular.

PS: Així han recollit la notícia, entre molts altres, El Mundo, l’Avui o el The Guardian britànic, on es senten especialment satisfets amb el premi a Kao, establert a Anglaterra en el moment de fer la descoberta que li ha donat el Nobel.

1 comentari

Filed under Física, Notícies

Premi Nobel de Medicina o Fisiologia’09: La font de l’eterna joventut

Aquesta ha estat l’analogia més utilitzada a diaris i noticiaris de ràdio i televisió per anunciar, durant el dia d’avui, la concessió del Nobel de Medicina pel descobriment de com els cromosomes són protegits pels telòmers i l’enzim telomerasa a Elizabeth H. Blackburn, Carol W. Greider i Jack W. Szostak. Així encapçala la Fundació Nobel el seu comunicat oficial.

Nobels_Med copia

Els tres guardonats. D'esquerra a dreta: Blackburn, Greider i Szostak

Elizabeth Blackburn (Wiki) va nèixer el 1948 a Tasmània, a Austràlia. Es va llicenciar el 1970 a la Universitat de Melbourne, i va obtenir el seu doctorat a la Universitat de Cambridge el 1975. Després de dues estades a Yale i la Universitat de Califònia a Berkeley, actualment és professora de Biologia i Fisiologia de la Universitat de Califòrnia a San Francisco (UCSF). Va ser durant la seva etapa a Berkeley quan va encapçalar els estudis que finalment li han reportat el premi aquest any. La seva feina durant tots aquests anys s’ha centrat fonamentalment en entendre el funcionament dels telòmers.

Jack Szostak (Wiki), nascut a Londres el 1952 però criat a Canadà, va llicenciar-se el 1970 (!) a la Universitat McGill (Quebec i Montreal). Després, va dur a terme el seu doctorat a la Universitat de Cornell. Passada aquesta etapa, va començar a treballar al seu propi laboratori a la Universitat de Harvard, institució de la qual encara forma part. A banda dels telòmers, els seus interessos abarquen molts altres camps de la genètica i ha estat implicat activament, entre altres, al Projecte Genoma Humà.

Carol Greider (Wiki) va nèixer a San Diego (Califòrnia) el 1961. Es va llicenciar a la Universitat de Califòrnia a Santa Barbara el 1983, i després es va traslladar a Berkeley. Allà va dur a terme el seu doctorat sota la direcció de Blackburn, que va completar el 1987, ja amb la llavor del Nobel sota el braç. Després d’un temps al Cold Spring Harbor Laboratory de Nova York, va integrar-se a la Universitat Johns Hopkins, on encara treballa avui en dia. Els seus estudis segueixen centrats en la telomerasa.

Tres cromosomes i les seves regions telomèriques (imatge acolorida de microscòpia electrònica de rastreig)

Tres cromosomes i les seves regions telomèriques (imatge acolorida de microscòpia electrònica de rastreig)

Els telòmers i la telomerasa, l’enzim encarregat de la seva conservació, són un dels mecanismes essencials dels quals disposen les cèl·lules per evitar danys als seus cromosomes (recordeu: en l’analogia habitual, cada cromosoma és un dels volums de l’enciclopèdia de la vida que és el genoma). La idea és ben senzilla: per tal de prevenir que els cromosomes puguin resultar danyats a través dels seus extrems, cal protegir-los d’alguna manera; el mitjà més adient per fer-ho és DNA repetitiu i sense cap altra funció.

I això són precisament els telòmers: seqüencies de DNA curtes i senzilles repetides milers de vegades als extrems dels cromosomes. Més concretament, el fragment repetit es compon de 6 “lletres”: CCCCAA. I a més, és pràcticament universal, perquè els telòmers de la gran majoria d’animals i plantes que coneixem es componen justament de milers de C i A. Aquesta repetició és la que permet que es formin estructures secundàries, amb la forma aproximada d’un clip, que es pleguen sobre elles mateixes formant un manyoc que impedeix l’accès al DNA útil de l'”interior” dels cromosomes. Blackburn i Szostak van descobrir la seqüencia i la universalitat dels telòmers el 1982.

Així, un cop descoberts els telòmers, el següent pas lògic dictava que calia saber com es formen i es mantenen. Va ser així com, dos anys després, Greider—sota la direcció de Blackburn—va identificar l’enzim responsable d’aquesta tasca: la telomerasa. En algunes cèl·lules, aquest enzim s’encarrega de localitzar les repeticions CCCCAA i copiar-les moltes vegades una darrera l’altra, evitant que els telòmers desapareguin.

La telomerasa, però no es troba activa a totes les cèl·lules. És més, en un adult, només cal que sigui realment eficient a les seves cèl·lules germinals, aquelles que han de donar lloc a espermatozoides i/o òvuls. Per a aquestes,  la conservació d’uns cromosomes “en plena forma” és imprescindible per tal que el zigot al qual donaran lloc pugui desenvolupar-se sense dificultats. En canvi, la resta de les nostres cèl·lules (siguin del fetge, la mà o la punta del nas) inactiven la telomerasa perquè es poden permetre anar perdent els seus telòmers: en cada divisió es perden algunes de les milers de repeticions de CCCCAA, i això passa perquè davant de tantes repeticions és fàcil que la maquinària cel·lular per a la replicació (la còpia) del DNA se’n salti alguna. La pèrdua total dels telòmers farà que la cèl·lula, per evitar els danys que ara sí poden patir els seus cromosomes, tiri pel dret i es suïcidi (o, tècnicament, “entri en apoptosi”) o entri en senescència. Aquesta impedeix noves divisions: la no-renovació de les cèl·lules té el mateix efecte que la seva mort. Amb el pas del temps, són tantes les cèl·lules que no tenen una altra sortida a part de la desaparició, que acabem envellint.  Així, la feina per la qual s’ha reconegut els tres investigadors pot realment entendre’s com una recerca de la font de l’eterna joventut de les cèl.lules.

Fin aquí tot clar? Si encara dubteu, aquest gràfic de The New York Times o aquest de la Fundació Nobel us poden ajudar. Parlem ara de la mentida que he inclòs al paràgraf anterior. A banda de les cèl·lules germinals, hi ha unes altres cèl·lules en els adults que presenten la telomerasa activa (hiperactiva, fins i tot podríem dir): les cèl·lules del càncer. Com sabem, aquestes són cèl·lules que s’han tornat boges i que únicament tenen la missió de multiplicar-se i sobreviure. Justament, un dels mecanismes clàssics per a assegurar-ho és reactivar la telomerasa. Amb això no busquen protegir els seus cromosomes (que han patit ja tot tipus de danys), sinó “enganyar” el mecanisme de senescència i/o suïcidi per tal que no s’activi: així continuen vivint i multiplicant-se indefinidament.

Espero que l’article us hagi aclarit una mica la importància del premi que s’ha atorgat avui, i de les seves implicacions. Per a qualsevol dubte que pugueu tenir, teniu els comentaris a sota mateix.

I demà, la propera entrega: el Nobel de Física’09 s’anuncia a les 11:45.

PS: Us deixo una mostra de com han recollit la notícia diversos mitjans: El País, el canal 3/24, The NY Times (el diari de la “nacionalitat” dels guardonats) i el Dagens Nyheter suec (potser no hi enteneu res, com jo, però em feia gràcia la visió local).

3 comentaris

Filed under Biologia, Medicina, Notícies

Comença la “Setmana Gran” de la Ciència!

I s’inicia amb l’anunci, avui al migdia, dels guardonats amb el Premi Nobel de Medicina o Fisiologia. Durant tota aquesta setmana, i fins dilluns que ve, anirem sabent qui són les persones que han efectuat els grans passos per fer avançar la ciència a nivell mundial. Així que cada dia procuraré aportar-vos una mica més d’informació sobre els guardonats amb el Nobel en qüestió i, més que en el qui, intentarem aprofundir en el PERQUÈ se l’han guanyat.

La medalla que reben els guardonats amb el premi científic més prestigiós. iFont: Wikipedia / Wikimedia Commons/i

La medalla que reben els guardonats amb el premi científic més prestigiós. Font: Wikipedia / Wikimedia Commons

Abans de començar a valorar la descoberta i els tres noms del dia, però, parlem una mica dels Premis Nobel. Podeu trobar tota la informació detallada al seu lloc web oficial i, sobretot, a la seva secció de Preguntes freqüents.

Com m’imagino que ja sabeu, els Premis van ser instituits a Suècia gràcies a la donació de la seva fortuna que va fer el químic i industrial Alfred Nobel [1833-1896] (tots els detalls biogràfics també es troben al lloc oficial). Conegut pels avenços que va aconseguir en el camp de l’armament i els explosius (és el creador, entre altres, de la dinamita), va establir al seu testament que la seva fortuna—i els rèdits que proporcionès als seus hereus en invertir-la en valors segurs—s’havia de destinar a premiar anualment aquelles persones “que hagin realitzat el major benefici a la humanitat“. El mateix testament estableix que es premïin els personatges responsables de les novetats més importants en cinc camps: Física, Química (concedits per l’Acadèmia Sueca de Ciències), Fisiologia o Medicina (decisió de l’Institut Karolinska d’Estocolm), Literatura (atorgat per l’Acadèmia d’Estocolm) i la Pau (decisió d’un comité amb membres del Parlament noruec). A més a més, el 1968 es va instituir un premi a les Ciències econòmiques, creat pel Banc de Suècia en memòria de Nobel.

Deixant de banda les polèmiques que hagin pogut suscitar alguns dels seus nomenaments (com el del Nobel de la Pau per Henry Kissinger el 1973) i les posssibles manipulacions polítiques que sempre es comenten, em sembla que els Nobel són sempre, des de la primera edició el 1901, una de les grans notícies científiques de l’any. Contribueixen a donar una gran notorietat a la ciència de primer nivell, a fer que arribin al gran públic els descobriments que sovint només es comenten entre els iniciats. Això és importantíssim perquè la societat sempre és la gran beneficiada d’aquests avenços.

Us deixo el calendari d’aquests propers dies:

  • 5 d’octubre. Nobel en Fisiologia o Medicina: Elizabeth H. Blackburn, Carol W. Greider i Jack W. Szostak [Post]
  • 6 d’octubre. Nobel en Física: Charles K. Kao, Willard S. Boyle i George E. Smith [Post]
  • 7 d’octubre. Nobel en Química: Venkatraman Ramakrishnan, Thomas A. Steitz i Ada E. Yonath [Post]
  • 8 d’octubre. Nobel en Literatura: Herta Müller
  • 9 d’octubre. Nobel en Pau: Barack H. Obama
  • 12 d’octubre. Nobel en Ciències Econòmiques: Elinor Olstrom i Oliver E. Willliamson

Avui mateix comencem la sèrie dels Nobel 2009!

1 comentari

Filed under General, Notícies