Tag Archives: càncer

El GPS per entendre el càncer

Tot i que ja fa unes setmanes que aquesta notícia va aparéixer a El País (també se’n va fer ressò la BBC), no volia que quedés amagada per la mandra d’escriure durant el Nadal. Em sembla, a més a més, que pot ser una novetat interessant per començar l’any amb optimisme. El passat 16 de desembre, Nature va publicar on-line els articles derivats de dos estudis dirigits per científics del Wellcome Trust Sanger Institute, situat a Hinxton, al sud de Cambridge (web aquí). En la nota de premsa publicada donen alguns detalls més en relació a la informació apareguda als mitjans.

Utilitzant noves tècniques per a la seqüenciació massiva del genoma, els investigadors d’aquest institut han definit els mapes de les mutacions que condueixen a l’aparició de dos tipus de càncer amb una elevada mortalitat: el de pulmó i el melanoma maligne. Aquests mapes—que podeu veure a la imatge de sota—s’han establert tot comparant els genomes de cèl·lules canceroses amb altres de cèl·lules “normals” de la sang.

Mapes de les mutacions identificades en els estudis publicats a Nature. Font: Wellcome Trust Sanger Institute

La publicació d’aquests resultats és un dels primers fruits de l’International Cancer Genome Consortium (Consorci Internacional per al Genoma del Càncer). Aquesta és una iniciativa en la qual participen una desena de països per aconseguir desxifrar els genomes de diversos tipus de tumors. Es tracta d’un model que beu de l’experiència del consorci similar que va portar a la publicació del genoma humà ara fa ja 10 anys. L’elecció d’aquests dos càncers per començar a treballar-hi no és casual: a banda de la seva elevada mortalitat, cal considerar que tots dos presenten unes causes ben definides, de manera que les mutacions ara detectades es poden lligar clarament als agents que les provoquen.

Cèl·lules de càncer de pulmó en divisió

El càncer de pulmó és responsable si fa no fa d’una de cada 6 morts per càncer. És conegut des de fa anys que la seva causa principal és la inhalació de fum de tabac, que conté una seixantena de substàncies tòxiques i potencialment carcinogèniques.

L’estudi actual, dirigit per Peter Campbell, s’ha centrat en el càncer de pulmó de cèl·lules petites (tècnicament SCLC), considerada una de les variants més greus de la malaltia. Són precisament les cèl·lules petites les que ens donen la pista d’aquesta agressivitat: donada la gran velocitat amb què es divideixen les cèl·lules canceroses, no tenen gaire temps de crèixer, i d’aquí la seva aparença.

Després de seqüenciar els genomes 60 vegades s’han identificat un total de 23.000 defectes en el genoma d’aquestes cèl·lules: cada 15 cigarretes es fixa una mutació al genoma del fumador. Aquests canvis són de tot tipus: mutacions puntuals (canvi d’una lletra de l’ADN), duplicacions o delecions (desaparició) de certs fragments, translocacions (salt a una altra regió del genoma) d’alguns trossos d’ADN… D’acord amb els investigadors del projecte, el patró que s’ha identificat és justament el que es podia esperar de l’exposició als productes perjudicials presents al tabac. Podeu llegir més informació sobre l’estudi aquí, i (aquells que hi pugueu accedir) teniu l’article de Nature en aquest enllaç.

Cèl·lules d'un melanoma en divisió

El melanoma maligne causa només un 3% dels càncers de pell, però és responsable del 75% de les morts per aquesta malaltia. Com en el cas anterior, la seva causa està clarament establerta: l’exposició a la radiació ultraviolada del Sol.

Els investigadors encarregats d’aquest projecte, dirigits per Michael Stratton, han dut a terme 70 vegades la seqüenciació dels genomes “cancerós” i “normal” per arribar a definir el mapa de l’origen del melanoma. D’aquesta manera, han identificat un total de 33.000 mutacions de tipus molt diversos, i que permeten traçar la genealogia d’aquest tumor. Les mutacions que hi han trobat són molt diverses, però hi abunden les que són degudes directament a la radiació: els dímers de timina, fusions de dues timines (les lletres “T” de l’abecedari de l’ADN) consecutives en els seus cromosomes. Podeu trobar més informació aquí, i (alguns) també accedir a l’article original.

A banda de les mutacions degudes directament al fum i els rajos ultraviolats, aquests estudis han identificat també canvis deguts als esforços que han fet les cèl·lules tumorals precisament per protegir-se’n. D’alguna manera, és una prova de la batalla perduda de les cèl·lules contra la malaltia, els intents desesperats per intentar que el càncer no es desenvolupi. Una prova més d’aquests “esforços” és el fet que moltes de les mutacions detectades cauen precisament en els gens responsables de produir la maquinària de defensa de la cèl·lula contra els carcinògens.

Cal, però, tenir en compte que aquests són només els mapes d’aquests dos casos de càncer en concret. Cada tumor presentarà variants diferents, precisament perquè la destrucció del sistema de defensa de la cèl·lula fa que hi apareguin moltíssimes mutacions. Tot i això, la publicació d’aquests estudis ens acosta a entendre en profunditat el SCLC i el melanoma, a partir del patró bàsic on queden identificats alguns gens que CAL que mutin per tal que aquests càncers es desenvolupin. Aquests mapes permetran, per exemple, la identificació de dianes terapèutiques idònies, és a dir, saber de quins gens cal aconseguir recuperar el funcionament amb fàrmacs creats específicament amb aquest objectiu. També es creu que poden afavorir la identificació de nous mecanismes cel·lulars de defensa, com de fet ha ocorregut ja gràcies al mapa del càncer de pulmó.

Evidentment només ens trobem davant d’un primer pas, però aquests sempre són els més difícils de fer. Des d’aquest moment, ja s’ha comprovat que les noves tècniques de seqüenciació donen els seus fruits. També s’ha vist una vegada més que la col·laboració de diversos grups en un Consorci Internacional és una eina efectiva per a objectius tan grans i complexos com aquest. I els nous resultats amb càncers d’estòmac (a la Xina), boca (a l’Índia), fetge (al Japó), ovaris, pàncrees i cervell (als Estats Units), i mama (al Regne Unit mateix) ben segur que no es faran esperar. De fet, el Sanger Institute ja anunciava la setmana següent que s’havien aconseguit mapar les delecions i insercions de 24 tumors mamaris diferents.

El coneixement de les bases profundes del càncer és essencial per entendre’l. Per primer cop, disposem d’un full de ruta complet, un mapa amb tots els punts de referència necessaris per posar al GPS que ens acosta, apoc a poc, a la fi del càncer. No us sembla una bona manera de començar l’any a iCIENTIFICats?

PD: El mateix dia que es publicaven aquests articles a Nature, iCIENTIFICats feia el seu salt als mitjans. A la secció “A cop de clic” (link del dia 16/12)d’ El Món a RAC1 (blog del programa) van parlar d’aquest blog. Com que encara no ho havia fet des d’aquí, els vull agrair de nou l’ajut per difondre’l: Gràcies, Basté & Co.! Gràcies, Xavi Bundó!

6 comentaris

Filed under Biologia, Medicina, Notícies, Recerca

Premi Nobel de Medicina o Fisiologia’09: La font de l’eterna joventut

Aquesta ha estat l’analogia més utilitzada a diaris i noticiaris de ràdio i televisió per anunciar, durant el dia d’avui, la concessió del Nobel de Medicina pel descobriment de com els cromosomes són protegits pels telòmers i l’enzim telomerasa a Elizabeth H. Blackburn, Carol W. Greider i Jack W. Szostak. Així encapçala la Fundació Nobel el seu comunicat oficial.

Nobels_Med copia

Els tres guardonats. D'esquerra a dreta: Blackburn, Greider i Szostak

Elizabeth Blackburn (Wiki) va nèixer el 1948 a Tasmània, a Austràlia. Es va llicenciar el 1970 a la Universitat de Melbourne, i va obtenir el seu doctorat a la Universitat de Cambridge el 1975. Després de dues estades a Yale i la Universitat de Califònia a Berkeley, actualment és professora de Biologia i Fisiologia de la Universitat de Califòrnia a San Francisco (UCSF). Va ser durant la seva etapa a Berkeley quan va encapçalar els estudis que finalment li han reportat el premi aquest any. La seva feina durant tots aquests anys s’ha centrat fonamentalment en entendre el funcionament dels telòmers.

Jack Szostak (Wiki), nascut a Londres el 1952 però criat a Canadà, va llicenciar-se el 1970 (!) a la Universitat McGill (Quebec i Montreal). Després, va dur a terme el seu doctorat a la Universitat de Cornell. Passada aquesta etapa, va començar a treballar al seu propi laboratori a la Universitat de Harvard, institució de la qual encara forma part. A banda dels telòmers, els seus interessos abarquen molts altres camps de la genètica i ha estat implicat activament, entre altres, al Projecte Genoma Humà.

Carol Greider (Wiki) va nèixer a San Diego (Califòrnia) el 1961. Es va llicenciar a la Universitat de Califòrnia a Santa Barbara el 1983, i després es va traslladar a Berkeley. Allà va dur a terme el seu doctorat sota la direcció de Blackburn, que va completar el 1987, ja amb la llavor del Nobel sota el braç. Després d’un temps al Cold Spring Harbor Laboratory de Nova York, va integrar-se a la Universitat Johns Hopkins, on encara treballa avui en dia. Els seus estudis segueixen centrats en la telomerasa.

Tres cromosomes i les seves regions telomèriques (imatge acolorida de microscòpia electrònica de rastreig)

Tres cromosomes i les seves regions telomèriques (imatge acolorida de microscòpia electrònica de rastreig)

Els telòmers i la telomerasa, l’enzim encarregat de la seva conservació, són un dels mecanismes essencials dels quals disposen les cèl·lules per evitar danys als seus cromosomes (recordeu: en l’analogia habitual, cada cromosoma és un dels volums de l’enciclopèdia de la vida que és el genoma). La idea és ben senzilla: per tal de prevenir que els cromosomes puguin resultar danyats a través dels seus extrems, cal protegir-los d’alguna manera; el mitjà més adient per fer-ho és DNA repetitiu i sense cap altra funció.

I això són precisament els telòmers: seqüencies de DNA curtes i senzilles repetides milers de vegades als extrems dels cromosomes. Més concretament, el fragment repetit es compon de 6 “lletres”: CCCCAA. I a més, és pràcticament universal, perquè els telòmers de la gran majoria d’animals i plantes que coneixem es componen justament de milers de C i A. Aquesta repetició és la que permet que es formin estructures secundàries, amb la forma aproximada d’un clip, que es pleguen sobre elles mateixes formant un manyoc que impedeix l’accès al DNA útil de l'”interior” dels cromosomes. Blackburn i Szostak van descobrir la seqüencia i la universalitat dels telòmers el 1982.

Així, un cop descoberts els telòmers, el següent pas lògic dictava que calia saber com es formen i es mantenen. Va ser així com, dos anys després, Greider—sota la direcció de Blackburn—va identificar l’enzim responsable d’aquesta tasca: la telomerasa. En algunes cèl·lules, aquest enzim s’encarrega de localitzar les repeticions CCCCAA i copiar-les moltes vegades una darrera l’altra, evitant que els telòmers desapareguin.

La telomerasa, però no es troba activa a totes les cèl·lules. És més, en un adult, només cal que sigui realment eficient a les seves cèl·lules germinals, aquelles que han de donar lloc a espermatozoides i/o òvuls. Per a aquestes,  la conservació d’uns cromosomes “en plena forma” és imprescindible per tal que el zigot al qual donaran lloc pugui desenvolupar-se sense dificultats. En canvi, la resta de les nostres cèl·lules (siguin del fetge, la mà o la punta del nas) inactiven la telomerasa perquè es poden permetre anar perdent els seus telòmers: en cada divisió es perden algunes de les milers de repeticions de CCCCAA, i això passa perquè davant de tantes repeticions és fàcil que la maquinària cel·lular per a la replicació (la còpia) del DNA se’n salti alguna. La pèrdua total dels telòmers farà que la cèl·lula, per evitar els danys que ara sí poden patir els seus cromosomes, tiri pel dret i es suïcidi (o, tècnicament, “entri en apoptosi”) o entri en senescència. Aquesta impedeix noves divisions: la no-renovació de les cèl·lules té el mateix efecte que la seva mort. Amb el pas del temps, són tantes les cèl·lules que no tenen una altra sortida a part de la desaparició, que acabem envellint.  Així, la feina per la qual s’ha reconegut els tres investigadors pot realment entendre’s com una recerca de la font de l’eterna joventut de les cèl.lules.

Fin aquí tot clar? Si encara dubteu, aquest gràfic de The New York Times o aquest de la Fundació Nobel us poden ajudar. Parlem ara de la mentida que he inclòs al paràgraf anterior. A banda de les cèl·lules germinals, hi ha unes altres cèl·lules en els adults que presenten la telomerasa activa (hiperactiva, fins i tot podríem dir): les cèl·lules del càncer. Com sabem, aquestes són cèl·lules que s’han tornat boges i que únicament tenen la missió de multiplicar-se i sobreviure. Justament, un dels mecanismes clàssics per a assegurar-ho és reactivar la telomerasa. Amb això no busquen protegir els seus cromosomes (que han patit ja tot tipus de danys), sinó “enganyar” el mecanisme de senescència i/o suïcidi per tal que no s’activi: així continuen vivint i multiplicant-se indefinidament.

Espero que l’article us hagi aclarit una mica la importància del premi que s’ha atorgat avui, i de les seves implicacions. Per a qualsevol dubte que pugueu tenir, teniu els comentaris a sota mateix.

I demà, la propera entrega: el Nobel de Física’09 s’anuncia a les 11:45.

PS: Us deixo una mostra de com han recollit la notícia diversos mitjans: El País, el canal 3/24, The NY Times (el diari de la “nacionalitat” dels guardonats) i el Dagens Nyheter suec (potser no hi enteneu res, com jo, però em feia gràcia la visió local).

3 comentaris

Filed under Biologia, Medicina, Notícies

Una arma contra l’origen del càncer

La notícia

La setmana passada va tenir gran ressò la publicació a ‘Cell‘ (classificada en segona posició pel que fa al factor d’impacte, per darrera de ‘Nature‘ i per davant de ‘Science’) d’un estudi del MIT [Massachusets Institute of Technology] sobre un fàrmac que ataca específicament les conegudes com a  cèl·lules mare del càncer. Aquest descobriment és d’una rellevància especial perquè aquestes cèl·lules són altament resistents als tractaments quimioteràpics habituals, i poden afavorir la regeneració de tumors aparentment curats.

Els investigadors del MIT (Gupta et al.) van treballar amb una línia específica de cancer stem-like cells (és a dir, cèl·lules similars a les cèl·lules mare del càncer). La línia es va obtenir a partir de tumors de mama de ratolí, les cèl·lules dels quals van ser sotmeses a un tractament específic per forçar la transició epiteli-mesènquima. Aquest pas és habitual en l’aparició de metàstasis, i uns nivells elevats d’aquest fenomen s’associen a una major agressivitat del càncer, exactament igual que la supervivència d’aquestes cèl·lules mare. El cultiu d’aquesta línia va permetre realitzar el cribatge (la traducció del terme anglès screening) d’unes 16.000 substàncies químiques. Un primer filtre va permetre començar a treballar amb 32 candidats que atacaven específicament aquestes cèl·lules. Després de seleccionar-ne vuit amb característiques especialment interessants, els autors del treball van identificar un compost amb una gran activitat contra les cèl·lules en qüestió: la salinomicina.

Curiosament, la salinomicina és una molecula que fins ara s’ha utilitzat com a antibiòtic i com a component de diversos verins, de manera que res feia pensar en el seu ús com a tractament del càncer. El cas és que aquest estudi ha demostrat que és unes 100 vegades més eficaç contra les cancer stem cells que altres compostos habituals en la quimioteràpia, com el taxol (o paclitaxel). Cal dir, a més, que l’eficàcia s’ha demostrat no només sobre aquesta línia de cultius, sinó també en  tumors “autèntics” de ratolí. El mecanisme d’acció de la molècula encara és desconegut i, com es sol dir en qualsevol article científic (o paper) que vulgui merèixer aquest nom, ‘calen més investigacions per aportar llum a aquest descobriment’.

Parlem-ne

Com sempre passa amb aquest tipus de notícies, cal ser molt prudent sobre l’aplicació clínica en humans de la salinomicina. De fet, és possible que mai arribi a aplicar-se a la quimioteràpia. Des d’aquest moment, s’inicia un procés molt llarg i car, que ha de passar per diverses etapes tant en ratolins com en humans. Aquest ha de permetre determinar les dosis segures, possibles efectes secundaris, interaccions amb altres fàrmacs… en resum, tot el que trobem als prospectes de medicaments. I no es pot descartar la possibilitat que  aquestes anàlisis no arribin a bon port.

Evidentment, però,  la troballa suposa un avenç destacat.  Ho és sobretot perquè implica l’obertura d’un nou camí en la recerca sobre el càncer i el seu tractament. Els propis autors assenyalen al seu article que normalment els esforços es centren més en els aspectes genètics i moleculars—una via que ha donat i dóna molt bons resultats—, i no pas en l’anàlisi de com atacar etapes molt específiques del desenvolupament de la malaltia. A més a més, sovint es treballa a la inversa que en aquest cas. Normalment, s’identifica un gen o proteïna amb un paper molt destacat en cert tipus de càncer, i s’intenta atacar la malaltia per aquest front. En aquest cas, com ja hem asseyalat, primer s’ha identificat la “solució”, i ara cal buscar perquè té aquest efecte.

Un últim aspecte destacable del treball de Gupta i els seus col·laboradors és l’ús de tècniques high-throughput, o d’alta resolució. Aquests mètodes han anat guanyant protagonisme amb els anys en la recerca biomèdica. Tot i que ja hi dedicaré un post més endavant, consisteixen bàsicament en l’anàlisi simultani de moltes “coses” per identificar-ne alguns amb l’efecte desitjat: expressió dels gens (com en els microarrays o xips de DNA), fàrmacs o altres substàncies químiques (com el cribatge realitzat en aquest cas)… De fet, ja s’ha suggerit que les farmacèutiques intentin analitzar les seves “biblioteques” de compostos amb aquesta metodologia, per identificar altres substàncies amb un efecte similar.

Què en penseu de tot plegat? Us resulta un tema atraient i interessant? Penseu que es poden posar esperances, si no en la salinomicina, com a mínim en la metodologia aplicada? Espero els comentaris aquí sota.

PS: Us deixo els enllaços amb la notícia a El Mundo, El País i l’anunci oficial del MIT al seu web. A banda, una animació del 3/24, senzilla però clara.

6 comentaris

Filed under Biologia, Notícies, Recerca